
Generating functional analysis of CDMA detection dynamics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys. A: Math. Gen. 38 9917

(http://iopscience.iop.org/0305-4470/38/46/002)

Download details:

IP Address: 171.66.16.94

The article was downloaded on 03/06/2010 at 04:02

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/38/46
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 38 (2005) 9917–9929 doi:10.1088/0305-4470/38/46/002

Generating functional analysis of CDMA detection
dynamics

Kazushi Mimura1 and Masato Okada2,3,4

1 Faculty of Information Sciences, Hiroshima City University, Hiroshima 731-3194, Japan
2 Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-5861, Japan
3 Brain Science Institute, RIKEN, Saitama 351-0198, Japan
4 PRESTO, Japan Science and Technology Agency, Chiba 277-8561, Japan

E-mail: mimura@cs.hiroshima-cu.ac.jp

Received 19 July 2005, in final form 7 September 2005
Published 2 November 2005
Online at stacks.iop.org/JPhysA/38/9917

Abstract
We investigate the detection dynamics of the parallel interference canceller
(PIC) for code-division multiple-access (CDMA) multiuser detection, applied
to a randomly spread, fully synchronous base-band uncoded CDMA channel
model with additive white Gaussian noise (AWGN) under perfect power control
in the large-system limit. It is known that the predictions of the density evolution
(DE) can fairly explain the detection dynamics only in the case where the
detection dynamics converge. At transients, though, the predictions of DE
systematically deviate from computer simulation results. Furthermore, when
the detection dynamics fail to converge, the deviation of the predictions of DE
from the results of numerical experiments becomes large. As an alternative,
generating functional analysis (GFA) can take into account the effect of the
Onsager reaction term exactly and does not need the Gaussian assumption of
the local field. We present GFA to evaluate the detection dynamics of PIC for
CDMA multiuser detection. The predictions of GFA exhibit good consistency
with the computer simulation result for any condition, even if the dynamics fail
to converge.

PACS numbers: 89.70.+c, 05.45.−a, 05.50.+q

1. Introduction

Mobile communication systems, such as cellular phone systems, are now used every day by
millions of people worldwide. Code-division multiple-access (CDMA) is a digital modulation
system that employs spreading codes to enable access to a mobile communication system
by multiple users [1]. In the multipoint-to-point communication framework, CDMA allows
several users to share a single communication channel to a base station. Each user first
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modulates one’s own information sequence using the spreading code assigned to the user, and
then the modulated sequence is transmitted to the base station. The base station receives a
mixture of the transmitted signals and additional channel noise. Using the users’ spreading
codes, a demodulator at the base station extracts the original information sequence from the
received noise-degraded mixture signal. This process is called a detection.

Tanaka has evaluated the detection problem by the replica method [2–4]. However, the
detection process cannot be treated by the replica method. The detection process of CDMA
has drawn much attention from theoretical as well as practical viewpoints [5, 6]. Tanaka
and Okada have applied a dynamical theory of Hopfield model [7] to the detection process
[6]. Their method is equivalent to the density evolution (DE) framework in the field of
information theory [8]. In the DE framework, a local field, which is a matched filter output
that the estimated parallel interference is subtracted from, is separated into a signal part for the
detection and a remaining noise part. Furthermore, it is assumed that the noise part follows a
Gaussian distribution with mean zero. The predictions of DE can fairly explain the detection
dynamics only in the case where the detection dynamics converge [6]. However, at transients
the predictions of DE systematically deviate from computer simulation results. The Gaussian
assumption of the local field has a more serious influence, when the detection dynamics
fail to converge. In such a case, the deviation of the predictions of DE from the results of
numerical experiments becomes large [6]. On the other hand, generating functional analysis
(GFA) [9–12] does not need the Gaussian assumption. In this paper, we present GFA to
evaluate the detection dynamics for CDMA multiuser detection, applied to a randomly spread,
fully synchronous base-band uncoded CDMA channel model with additive white Gaussian
noise (AWGN) under perfect power control. In order to confirm the validity of our analysis,
we have performed computer simulations for some typical system load and channel noise
conditions.

2. System model

We will focus on the basic fully synchronous K-user base-band binary phase-shift-keying
(BPSK) CDMA channel model with perfect power control as

yµ ≡ 1√
N

K∑
k=1

s
µ

k bk + σ0n
µ, (1)

where yµ is the received signal at chip interval µ ∈ {1, . . . , N}, and where bk ∈ {−1, 1}
and s

µ

k ∈ {−1, 1} are the BPSK-modulated information bit and the spreading code of user
k ∈ {1, . . . , K} at chip interval µ, respectively. Figure 1 shows this CDMA communication
model. The Gaussian random variable σ 2

0 nµ, where nµ ∼ N(0, 1), represents channel noise
whose variance is σ 2

0 . The spreading codes are independently generated from the identical
unbiased distribution P

(
s
µ

k = 1
) = P

(
s
µ

k = −1
) = 1/2. The factor 1/

√
N is introduced in

order to normalize the power per symbol to 1. Using these normalizations, the signal-to-noise
ratio is defined as Eb/N0 = 1

/(
2σ 2

0

)
. The ratio β ≡ K/N is called system load.

The goal of multiuser detection is to simultaneously infer the information bits b1, . . . , bK

after receiving the base-band signals y1, . . . , yN . The updating rule for the tentative decision
b̂k(t) ∈ {−1, 1} of bit signal bk at stage t is

b̂k(t) = sgn


hk −

K∑
k′=1,�=k

Wkk′ b̂k′(t − 1)


 , (2)
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Figure 1. CDMA communication model.

where hk is the output of the matched filter for user k:

hk ≡ 1√
N

N∑
µ=1

s
µ

k yµ, (3)

and Wkk′ is the kk′-element of the sample correlation matrix W of the spreading code:

Wkk′ ≡ 1

N

N∑
µ=1

s
µ

k s
µ

k′ . (4)

The function sgn(x) denotes the sign function taking 1 for x � 0 and −1 for x < 0. This
iterative detection algorithm is called the parallel interference canceller (PIC) [1]. As for
initialization, we assume the matched filter stage, i.e., b̂k(0) = sgn(hk). This initialization is
easily treated by formally assuming

b̂k(−1) = 0, (5)

for all k. The widely used measure of the performance of a demodulator is the bit error
rate (BER) Pb(t), which is given by Pb(t) = [1 − m(t)]/2, where m(t) = 1

K

∑K
k=1 bkb̂k(t)

is the overlap between the information bits vector b(t) = †(b1, . . . , bK) and the tentative
decision vector b̂ = †(b̂1(t), . . . , b̂K(t)). The operator † denotes the transpose. Without loss
of generality, we assume that the true information bits are all 1, i.e., bk = 1 for all k, because
the spreading codes are unbiased.

3. Generating functional analysis

3.1. Generating functional

We analyse the detection dynamics in the large-system limit where K,N → ∞, while
the system load β is kept finite. For generating functional analysis, we introduce inverse
temperature γ . The stochastic updating rule for the tentative decision b̂k(t) ∈ {−1, 1} of bit
signal bk at stage t is given by

P [b̂k(t + 1) = −b̂k(t)] = 1
2 (1 − tanh γ b̂k(t + 1)uk(t)), (6)
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where

uk(t) ≡ hk −
K∑

k′=1,�=k

Wkk′ b̂k′(t) + θk(t), (7)

which is called a local field. In the limit where γ → ∞, this updating rule is equivalent to
(2). The term θk(t) is a time-dependent external field which is introduced in order to define
a response function. The inverse temperature and the external field are set γ → ∞ and
θk(t) = 0 in the end of analysis.

To analyse the detection dynamics of the system we define a generating functional Z[ψ]:

Z[ψ] =
∑

b̂(−1),...,b̂(t)

p[b̂(−1), . . . , b̂(t)] exp

(
−i

t∑
s=−1

b̂(s) · ψ(s)

)
(8)

where b̂(s) = †(b̂1(s), . . . , b̂K(s)), ψ(s) = †(ψ1(s), . . . , ψK(s)). In a familiar way [9–12],
one can obtain from Z[ψ] all averages of interest by differentiation, e.g.,

mk(s) = 〈b̂k(s)〉 = i lim
ψ→0

∂Z[ψ]

∂ψk(s)
, (9)

Ckk′(s, s ′) = 〈b̂k(s)b̂k′(s ′)〉 = − lim
ψ→0

∂Z[ψ]

∂ψk(s)∂ψk′(s ′)
, (10)

Gkk′(s, s ′) = ∂〈b̂k(s)〉
∂θk′(s ′)

= i lim
ψ→0

∂Z[ψ]

∂ψk(s)∂θk′(s ′)
. (11)

The dynamics (6) is a Markov chain, so the path probability p[b̂(−1), . . . , b̂(t)] is simply
given by products of the individual transition probabilities ρ[b̂(s + 1)|b̂(s)] of the chain:

p[b̂(−1), . . . , b̂(t)] = p[b̂(−1)]
t−1∏

s=−1

ρ[b̂(s + 1)|b̂(s)], (12)

where these transition probabilities are given by

ρ[b̂(s + 1)|b̂(s)] =
K∏

k=1

eγ b̂k(s+1)uk(s)

2 cosh γ uk(s)
. (13)

Since the initial state is given by (5), the initial-state probability becomes p[b̂(−1) = 0] =∏K
k=1 p[b̂k(−1) = 0] = 1. We separate the local field at any stage by inserting a following

delta distributions:

1 =
∫

δuδû

t−1∏
s=−1

K∏
k=1

exp


iûk(s)


uk(s) − hk +

K∑
k′ �=k

Wkk′ b̂k′(s) − θk(s)





 , (14)

where δu ≡ ∏t−1
s=−1

∏K
k=1

duk(s)√
2π

and δû ≡ ∏t−1
s=−1

∏K
k=1

dûk(s)√
2π

. We can express (8) as

Z[ψ] =
∑

b̂(−1),...,b̂(t)

p[b̂(−1)]
∫

δuδû

× exp

(
i

t−1∑
s=−1

K∑
k=1

ûk(s){uk(s) − b̂k(s) − θk(s)} − i
t∑

s=−1

K∑
k=1

b̂k(s)ψk(s)

)

× exp

(
t∑

s=0

K∑
k=1

{γ b̂k(s)uk(s) − ln 2 cosh γ uk(s − 1)}
)
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× exp


−i

√
βσ0

N∑
µ=1

t−1∑
s=−1

[
1√
K

K∑
k=1

ûk(s)s
µ

k

]
nµ




× exp


−iβ

N∑
µ=1

t−1∑
s=−1

[
1√
K

K∑
k=1

ûk(s)s
µ

k

] [
1√
K

K∑
k′=1

s
µ

k′ {1 − b̂k′(s)}
]
 . (15)

In order to average the generating functional with respect to the disorder
{
s
µ

k

}
and {nµ}, we

isolate the spreading codes by introducing the variables vµ(s), wµ(s):

1 =
∫

δvδv̂

t−1∏
s=−1

N∏
µ=1

exp

(
iv̂µ(s)

[
vµ(s) − 1√

K

K∑
k=1

s
µ

k ûk(s)

])
, (16)

1 =
∫

δwδŵ

t−1∏
s=−1

N∏
µ=1

exp

(
iŵµ(s)

[
wµ(s) − 1√

K

K∑
k=1

s
µ

k {1 − b̂k(s)}
])

, (17)

where δv ≡ ∏N
µ=1

∏t−1
s=−1

dvµ(s)√
2π

, δv̂ ≡ ∏N
µ=1

∏t−1
s=−1

dv̂µ(s)√
2π

, δw ≡ ∏N
µ=1

∏t−1
s=−1

dwµ(s)√
2π

and

δŵ ≡ ∏N
µ=1

∏t−1
s=−1

dŵµ(s)√
2π

. The term in (15) containing the disorder becomes

exp


−i

√
βσ0

N∑
µ=1

t−1∑
s=−1

[
1√
K

K∑
k=1

ûk(s)s
µ

k

]
nµ




× exp


−iβ

N∑
µ=1

t−1∑
s=−1

[
1√
K

K∑
k=1

ûk(s)s
µ

k

] [
1√
K

K∑
k′=1

s
µ

k′ {1 − b̂k′(s)}
]


=
∫

δvδv̂δwδŵ exp


i

N∑
µ=1

t−1∑
s=−1

{v̂µ(s)vµ(s) + ŵµ(s)wµ(s)− βvµ(s)wµ(s)}



× exp


−1

2

N∑
µ=1

t−1∑
s=−1

t−1∑
s ′=−1

βσ 2
0 vµ(s)vµ(s ′)




× exp


−1

2

N∑
µ=1

t−1∑
s=−1

t−1∑
s ′=−1

v̂µ(s)

[
1

K

K∑
k=1

ûk(s)ûk(s
′)

]
v̂µ(s ′)




× exp


−1

2

N∑
µ=1

t−1∑
s=−1

t−1∑
s ′=−1

v̂µ(s)

[
1

K

K∑
k=1

ûk(s)− 1

K

K∑
k=1

ûk(s)b̂k(s
′)

]
ŵµ(s ′)




× exp


−1

2

N∑
µ=1

t−1∑
s=−1

t−1∑
s ′=−1

ŵµ(s)

[
1

K

K∑
k=1

ûk(s
′)− 1

K

K∑
k=1

ûk(s
′)b̂k(s)

]
v̂µ(s ′)




× exp


−1

2

N∑
µ=1

t−1∑
s=−1

t−1∑
s ′=−1

ŵµ(s)

[
1 − 1

K

K∑
k=1

b̂k(s) − 1

K

K∑
k=1

b̂k(s
′)

− 1

K

K∑
k=1

b̂k(s)b̂k(s
′)

]
ŵµ(s ′)


 , (18)
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where · · · denotes averaging over the disorder
{
s
µ

k

}
and {nµ}. We separate the relevant

one-stage and two-stage order parameters by inserting

1 =
(

K

2π

)t+1 ∫
dm dm̂ exp

(
iK

t−1∑
s=−1

m̂(s)

[
m(s) − 1√

K

K∑
k=1

b̂k(s)

])
, (19)

1 =
(

K

2π

)t+1 ∫
dk dk̂ exp

(
iK

t−1∑
s=−1

k̂(s)

[
k(s) − 1√

K

K∑
k=1

ûk(s)

])
, (20)

1 =
(

K

2π

)(t+1)2 ∫
dq dq̂ exp

(
iK

t−1∑
s=−1

t−1∑
s ′=−1

q̂(s, s ′)

[
q(s, s ′) − 1√

K

K∑
k=1

b̂k(s)b̂k(s
′)

])
,

(21)

1 =
(

K

2π

)(t+1)2 ∫
dQ dQ̂ exp

(
iK

t−1∑
s=−1

t−1∑
s ′=−1

Q̂(s, s ′)

[
Q(s, s ′) − 1√

K

K∑
k=1

ûk(s)ûk(s
′)

])
,

(22)

1 =
(

K

2π

)(t+1)2 ∫
dL dL̂ exp

(
iK

t−1∑
s=−1

t−1∑
s ′=−1

L̂(s, s ′)

[
L(s, s ′) − 1√

K

K∑
k=1

b̂k(s)ûk(s
′)

])
.

(23)

Since the initial-state probability is factorizable, the disorder-averaged generating functional
factorizes into single-site contributions. The disorder-averaged generating functional is for
K → ∞ dominated by a saddle point. We can thus simplify the saddle-point problem to

Z̄[ψ] =
∫

dm dm̂ dk dk̂ dq dq̂ dQ dQ̂ dL dL̂ exp(K(
 + � + �) + O(ln K)) (24)

in which the functions 
,�,� are given by


 ≡ i
t−1∑

s=−1

{m̂(s)m(s) + k̂(s)k(s)}

+ i
t−1∑

s=−1

t−1∑
s ′=0

{q̂(s, s ′)q(s, s ′) + Q̂(s, s ′)Q(s, s ′) + L̂(s, s ′)L(s, s ′)} (25)

� ≡ 1

K

K∑
k=1

ln

{ ∑
b̂(−1),...,b̂(t)

p[b̂(−1)]
∫

δuδû exp

(
t∑

s=0

{γ b̂(s)u(s −1)− ln 2 cosh γ u(s −1)}
)

× exp

(
−i

t−1∑
s=−1

t−1∑
s ′=−1

{q̂(s, s ′)b̂(s)b̂(s ′) + Q̂(s, s ′)û(s)û(s ′) + L̂(s, s ′)b̂(s)û(s ′)}
)

× exp

(
i

t−1∑
s=−1

û(s){u(s)− b̂(s)− θk(s)− k̂(s)} − i
t−1∑

s=−1

b̂(s)m̂(s)− i
t∑

s=−1

b̂(s)ψk(s)

)}

(26)
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� ≡ 1

K
ln

∫
δvδv̂δwδŵ exp


i

N∑
µ=1

t−1∑
s=−1

{v̂µ(s)vµ(s) + ŵµ(s)wµ(s) − βvµ(s)wµ(s)}



× exp


−1

2

N∑
µ=1

t−1∑
s=−1

t−1∑
s ′=−1

{
βσ 2

0 vµ(s)vµ(s ′) + v̂µ(s)Q(s, s ′)v̂µ(s ′)
}

× exp


−1

2

N∑
µ=1

t−1∑
s=−1

t−1∑
s ′=−1

{v̂µ(s)[k(s)−L(s ′, s)]ŵµ(s ′) + ŵµ(s)[k(s ′)−L(s, s ′)]v̂µ(s ′)}



× exp


−1

2

N∑
µ=1

t−1∑
s=−1

t−1∑
s ′=−1

{ŵµ(s)[1 − m(s) − m(s ′) + q(s, s ′)]ŵµ(s ′)}

 (27)

where δu ≡ ∏t−1
s=0

du(s)√
2π

and δû ≡ ∏t−1
s=0

dû(s)√
2π

. We have arrived at a single-site saddle-point

problem. Using normalization condition and Z̄[0] = 1, we obtain field derivatives of the
generating functional as follows:

〈b̂k(s)〉 = 〈b̂(s)〉∗, (28)

〈b̂k(s)b̂k′(s ′)〉 = δk,k′ 〈b̂(s)b̂(s ′)〉∗ + (1 − δk,k′)〈b̂(s)〉∗〈b̂(s ′)〉∗, (29)

∂

∂θk′(s ′)
〈b̂k(s)〉 = −iδk,k′ 〈b̂(s)û(s ′)〉∗, (30)

where δk,k′ is Kronecker’s delta taking 1 if k = k′ and 0 otherwise and 〈·〉∗ denotes

〈f ({b̂, u, û})〉∗ ≡
∑

b̂(−1),...,b̂(t)

∫
δuδûM({b̂, u, û})f ({b̂, u, û})∑

b̂(−1),...,b̂(t)

∫
δuδûM({b̂, u, û}) , (31)

with

M({b̂, u, û}) ≡ p[b̂(−1)] exp

(
t∑

s=0

{γ b̂(s)u(s − 1) − ln 2 cosh γ u(s − 1)}
)

× exp

(
−i

t−1∑
s=−1

t−1∑
s ′=−1

{q̂(s, s ′)b̂(s)b̂(s ′) + Q̂(s, s ′)û(s)û(s ′) +L̂(s, s ′)b̂(s)û(s ′)}
)

× exp

(
i

t−1∑
s=−1

û(s){u(s) − b̂(s) − θk(s) − k̂(s)} − i
t−1∑

s=−1

b̂(s)m̂(s)

)∣∣∣∣∣
saddle

.

(32)

The evaluation f |saddle denotes an evaluation of a function f at the dominating saddle point.
Therefore, we see the order parameters are essentially single-site ones.

3.2. saddle-point equations

In the limit K → ∞, the integral (24) will be dominated by the saddle point of the extensive
exponent 
 + � + �. We first calculate the remaining Gaussian integral in �:
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� = 1

β

∫
dv̂

(2π)(t+1)/2

dŵ

(2π)(t+1)/2

× exp

(
i†ŵ(β−11)v̂ − 1

2
†v̂Qv̂ − 1

2
†v̂†Bŵ − 1

2
†ŵBv̂ − 1

2
†ŵD̂ŵ

)

= 1

β

∫
dv̂

(2π)t/2
exp

(
−1

2
†v̂Qv̂

)
|D̂|−1/2 exp

(
−1

2
†v̂†(β−11 − B)D̂

−1
(β−11 − B)v̂

)

= − 1

2β
(ln|D̂| + ln|Q + †(β−11 − B)D̂

−1
(β−11 − B)|), (33)

where B, D̂ and Q are matrices having matrix elements

B(s, s ′) ≡ −ik(s ′) − G(s, s ′), (34)

D̂(s, s ′) ≡ σ 2
0

β
+ 1 − m(s) − m(s ′) + C(s, s ′), (35)

and Q(s, s ′), respectively. The saddle-point equations are derived by differentiation with
respect to integration variables {m, m̂,k, k̂, q, q̂,Q, Q̂,L, L̂}. These equations will involve
the average single-site correlation C(s, s ′) and the average single-site response function
G(s, s ′):

C(s, s ′) = lim
K→∞

1

K

K∑
k=1

〈b̂k(s)b̂k′(s ′)〉 = 〈b̂(s)b̂(s ′)〉∗, (36)

G(s, s ′) = lim
K→∞

1

K

K∑
k=1

∂

∂θk′(s ′)
〈b̂k(s)〉 = −i〈b̂(s)û(s ′)〉∗. (37)

Straightforward differentiation by usage of causality leads us to the following saddle-point
equations:

m̂(s) = k(s) = q̂(s, s ′) = Q(s, s ′) = 0, (38)

k̂(s) = |Λs |, (39)

m(s) = 〈b̂(s)〉∗, (40)

q(s, s ′) = 〈b̂(s)b̂(s ′)〉∗ = C(s, s ′), (41)

L(s, s ′) = iG(s, s ′) =
{−i〈b̂(s)û(s ′)〉∗, for s > s ′

0, for s � s ′,
(42)

Q̂ = −i 1
2
†(1 + βG)−1D(1 + β†G)−1, (43)

L̂ = (1 − β†G)−1, (44)

where Q̂, L̂,D and Λs are matrices having matrix elements Q̂(s, s ′), L̂(s, s ′),

D(s, s ′) ≡ βD̂(s, s ′) = σ 2
0 + β[1 − m(s) − m(s ′) + C(s, s ′)], (45)

and

s(s
′, s ′′) ≡

{
δs ′,s ′′ + βG(s ′′, s ′), for s ′ �= s

1, for s ′ = s,
(46)
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respectively. Substituting (38)–(44) into (31) and introducing a simple rescaling of local fields
and conjugate local fields, the term 〈b̂(s)û〉∗ becomes

〈b̂(s)û〉∗ =
∫

δuδû
∑

b̂(−1),...,b̂(t)

b̂(s)û exp

(
t−1∑

s=−1

{γ b̂(s + 1)u(s) − ln 2 cosh γ u(s)}
)

× exp

(
−1

2
†ûRû + iû(u − k̂ − θ − Γb̂)

)

= i
∫

dv exp
(− 1

2v · R−1v
)

√|2πR|
∑

b̂(−1),...,b̂(t)

b̂(s)R−1v

t−1∏
s=−1

1

2
[1 + b̂(s + 1) sgn u(s)],

(47)

in the limit γ → ∞, where û ≡ †(û(−1), . . . , û(t − 1)),R ≡ (1 + β†G)−1D(1 + βG)−1 and
Γ ≡ (1 + βG)−1βG. The terms 〈b̂(s)〉∗ and 〈b̂(s)b̂(s ′)〉∗ can also be calculated in a similar
way.

Let us summarize our calculation. Some macroscopic integration variables are found
to vanish in the relevant physical saddle point: ˆm(s) = k(s) = q̂(s, s ′) = Q(s, s ′) = 0.
The remaining ones can all be expressed in terms of three macroscopic observables, namely
the overlaps m(s), the single-site correlation functions C(s, s ′) and the single-site response
functions G(s, s ′). Finally, setting γ → ∞ and θ(s) = 0, we then arrive at the following
saddle-point equations in the thermodynamic limit, i.e., K → ∞:

m(s) = 〈〈b̂(s)〉〉, (48)

C(s, s ′) = 〈〈b̂(s)b̂(s ′)〉〉, (49)

G(s, s ′) =
{〈〈b̂(s)(R−1v)(s ′)〉〉, for s > s ′

0, for s � s ′.
(50)

The bit error rate is obtained by

Pb(s) = 1 − m(s)

2
. (51)

The average over the effective path measure is given by

〈〈g( ˆb,v)〉〉 ≡
∫

Dv Tr g(b̂,v)

t−1∏
s=−1

1

2
[1 + b̂(s + 1) sgn u(s)], (52)

Dv ≡ dv e− 1
2 v · R−1v

√|2πR| , (53)

Tr ≡
∑

b̂(−1)∈{0},b̂(0),...,b̂(t)∈{−1,1}
, (54)

u(s) = k̂(s) + v(s) + (Γb̂)(s), (55)

R = (1 + β†G)−1D(1 + βG)−1, (56)

Γ = (1 + βG)−1βG, (57)

k̂(s) = |Λs |, (58)

D(s, s ′) ≡ σ 2
0 + β[1 − m(s) − m(s ′) + C(s, s ′)], (59)
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Figure 2. The first few stages of the detection dynamics predicted by generating functional analysis
(solid line) and density evolution (dashed line). Computer simulations (square) are evaluated with
N = 8000 from 100 experiments for the cases Eb/N0 = 7.0 (dB) (upper), 9.0 (dB) (lower). The
system load is β = 0.5 < βc for both cases.

s(s
′, s ′′) =

{
δs ′,s ′′ + βG(s ′′, s ′), for s ′ �= s

1, for s ′ = s.
(60)

The terms (R−1v)(s) and (Γσ)(s) denote the sth element of the vector R−1v and Γσ,
respectively. Equations (48)–(60) entirely describe the dynamics of the system. In the limit
where t → ∞, the term (Γσ)(s) in (55) can be regarded as a self-interaction and corresponds
to the Onsager reaction term in equilibrium statistical mechanics. Therefore, in this paper, we
call this term the Onsager reaction term.

4. Results and discussion

In order to validate the results obtained above, we performed numerical experiments in an
N = 8000 system. Figure 2 shows the first few stages of the detection dynamics obtained
from 100 experiments for the cases Eb/N0 = 7.0, 9.0 (dB), predicted by generating functional
analysis (GFA) and density evolution (DE) [6], where Eb/N0 (dB) denotes 10 log10 Eb/N0

(see the appendix). The system load is β = 0.5 < βc, where βc is the critical system load
defined as the minimum system load at which the dynamics fail to converge. Figure 3 shows
the first few stages of the detection dynamics obtained from 100 experiments for the cases
Eb/N0 = 5.5, 7.5 (dB), predicted by GFA and DE with the system load β = 0.7 > βc.
Oscillation of the detection dynamics was observed, when β > βc. In such a case, both GFA
and DE predicted the failure of convergence of the dynamics. However, the DE results has
residual deviations in figures 2 and 3 due to the lack of the Onsager reaction term and the
assumption that the local field follows a Gaussian distribution. In particular, the deviation of
the DE predictions from the simulation results becomes large when β > βc. In contrast, GFA
exhibits good consistency with the simulation results for any system load.

The difference between DE and GFA also appears in a signal term with respect to the
information bit of the local field. The signal terms of DE and GFA at stage t represent Bt
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Figure 3. The first few stages of the detection dynamics predicted by generating functional analysis
(solid line) and density evolution (dashed line). Computer simulations (square) are evaluated with
N = 8000 from 100 experiments for the cases Eb/N0 = 5.5 (dB) (upper), 7.5 (dB) (lower). The
system load is β = 0.7 > βc for both cases.

and k̂(t), respectively (see the appendix). The signal term k̂(t) derived by GFA contains all
response functions G(s, s ′) with s, s ′ � t . On the other hand, the signal term Bt derived
by DE contains only the response functions of adjacent stages. This difference appears from
stage t = 1. The signal term k̂(1) of GFA is

k̂(1) =
∣∣∣∣∣∣
1 βG(0,−1) βG(1,−1)

0 1 βG(1, 0)

1 1 1

∣∣∣∣∣∣
= 1 − βG(1, 0) + β2G(1, 0)G(0,−1) − βG(1,−1), (61)

while the signal term B1 of DE is

B1 = 1 − βU1 + β2U1U0. (62)

As you can easily see, B1 contains only U1 and U0, which correspond to G(1, 0) and G(0,−1)

of GFA respectively, while the k̂(1) has the response function between stage 1 and stage −1
as G(1,−1).

5. Conclusions

We presented the generating functional analysis to describe the detection dynamics of PIC
for CDMA multiuser detection. The predictions of DE can qualitatively explain the detection
dynamics only when the detection dynamics converge. Furthermore, the deviation of the
predictions of DE from the results of numerical experiments becomes large when the detection
dynamics fail to convergence. In contrast, the predictions of GFA are in good agreement with
computer simulation result of PIC for any system load and channel noise level, even if the
dynamics fail to converge.
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Appendix. Density evolution of CDMA detection dynamics

Density evolution is a useful tool to analyse nonlinear dynamics [7, 8]. By means of density
evolution, the bit error rate Pb(t) of hard decisions b̂k(t) = sgn[uk(t − 1)] at the tth stage is
given by

Pb(t) = 1 − Mt

2
, (A.1)

where Mt are to be evaluated by the following recursive formulae for Bt, Ct,τ ,Mt , Ut and qt,τ :

Bt = 1 − βUtBt−1, (A.2)

Ct,τ = Vt,τ + β2UtUτCt−1,τ−1 +
t−1∑

λ=−1

Vλ,τ

t∏
κ=λ+1

(−βUκ) +
τ−1∑

λ=−1

Vλ,t

τ∏
κ=λ+1

(−βUκ), (A.3)

Vt,τ = σ 2
0 + β(1 − Mt − Mτ + qt,τ ), (A.4)

Mt+1 =
∫

Dz sgn(Bt + z
√

Ct,t ), (A.5)

Ut+1 = 1√
Ct,t

∫
Dz z sgn(Bt + z

√
Ct,t ), (A.6)

qt+1,τ+1 =
∫ ∫ ∫

Dz DuDv sgn(Bt + z
√

Ct,τ + u
√

Ct,t − Ct,τ )

× sgn(Bτ + z
√

Ct,τ + v
√

Ct,t − Ct,τ ), (A.7)

where Dz ≡ (2π)−1/2 e−z2/2 dz. The initializations are V−1,t = Vt,−1 = σ 2
0 +β(1−Mt), B−1 =

1,M−1 = 0, C−1,−1 = σ 2
0 + β,C−1,t = Ct,−1 = V−1,t − βUtV−1,t−1 and q−1,t = qt,−1 = 0.

The physical meaning of the parameters Bt, Ct,τ ,Mt , Ut and qt,τ is

Bt = E[uk(t)], (A.8)

Ct,τ = Cov[uk(t), uk(τ )], (A.9)

Mt+1 = 1

K

K∑
k=1

sgn[uk(t)], (A.10)

Ut+1 = 1

K

K∑
k=1

sgn′[uk(t)], (A.11)

qt+1,τ+1 = 1

K

K∑
k=1

sgn[uk(t)] sgn [uk(τ )]. (A.12)

The detailed derivation is available in the appendix of the paper [6]. In the derivation by means
of density evolution, it is assumed that the local field uk(t) follows the Gaussian distribution
with mean Bt and covariance Ct,τ . Furthermore, the Onsager reaction term is ignored. The
signal term Bt contains only the response functions of adjacent stages.
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[10] Düring A, Coolen A C C and Sherrington D 1998 J. Phys. A: Math. Gen. 31 8609
[11] Kawamura M and Okada M 2002 J. Phys. A: Math. Gen. 35 253
[12] Mimura K, Kawamura M and Okada M 2004 J. Phys. A: Math. Gen. 37 6437


	1. Introduction
	2. System model
	3. Generating functional analysis
	3.1. Generating functional
	3.2. saddle-point equations

	4. Results and discussion
	5. Conclusions
	Acknowledgments
	Appendix. Density evolution of CDMA detection dynamics 
	References

